<ECTC2024での発表を解説> 先端半導体パッケージング・実装技術の研究開発動向【提携セミナー】
半導体・電子部品実装 研究・開発 生産技術・品質保証 専門技術・ノウハウ
<ECTC2024での発表を解説> 先端半導体パッケージング・実装技術の研究開発動向【提携セミナー】
開催日時 | 2024/9/20(金) 13:00~16:30 |
---|---|
担当講師 | 福島 誉史 氏 |
開催場所 | 【WEB限定セミナー】※会社やご自宅でご受講下さい。 |
定員 | - |
受講費 | 通常申込:本体45,000円+税4,500円 E-Mail案内登録価格:本体42,700円+税4,270円 |
《ECTC2024での発表を解説》
先端半導体パッケージング・実装技術の研究開発動向
~最新の技術発表を、その特長・開発背景等を含めて解説~
~チップレット/インターポーザ、ラージパネル、ハイブリッド接合、光電融合など~
【提携セミナー】
主催:サイエンス&テクノロジー株式会社
受講可能な形式:【Live配信(アーカイブ配信付)】
●好評につき今年で4回目の開催!後工程関連の最新技術を扱う国際会議「ECTC2024」での
注目の発表をレビューします。最新の研究発表に関する情報収集にお役立てください。
セミナー趣旨
昨今、特に話題を集める半導体パッケージングですが、これに関連した数ある国際会議の中でも最も大きく最新の技術が発表されるのがECTC (Electronic Components and Technology Conference)です。今回のセミナーでは、半導体パッケージングの最新動向を紹介し、2024年5月に終えたECTC2024の中からチップレット/インターポーザやラージパネル、ハイブリッド接合および光電融合などを中心にハイライトを行います。ECTC2024の総発表件数389件(ポスター137件含む)から83件の注目発表をピックアップして解説する予定です。
得られる知識
半導体パッケージング技術最大の国際会議ECTC、特に今回はECTC2024で発表された研究内容を多く取り上げ、関連する技術の背景や他の技術との比較も含めて、その特長や技術の進展について初心者でも分かりやすく説明します。
受講対象
◎半導体後工程(半導体パッケージング、半導体実装技術)に関する最新の研究発表の内容を知りたい方
◎今年オンサイトで行われたECTC2024に参加できなかった方
◎2024年10月にECTC2025に投稿し2025年2月にfull paperを書く予定の方
◎この分野の動向や見どころ、方向性に関心のある方 を主対象といたします。
担当講師
東北大学 大学院工学研究科 機械機能創成専攻 准教授 福島誉史 氏
【講師紹介】
2001年4月~2003年3月 株式会社ピーアイ技術研究所 技術顧問
2003年4月~2004年7月 東北大学 ベンチャービジネスラボラトリー 講師(中核的研究機関研究員)
2004年8月~2010年3月 東北大学 大学院工学研究科 バイオロボティクス専攻 助手/助教
2010年4月~2015年3月 東北大学 未来科学技術共同研究センター 准教授
2015年4月~2016年7月 東北大学 大学院工学研究科 バイオロボティクス専攻 准教授
2016年3月~2017年7月 米国UCLA, Electrical Engineering Department, Visiting Faculty
2023年7月~熊本大学 半導体・デジタル研究教育機構 クロスアポイントメント教授 兼任
~現在に至る
セミナープログラム(予定)
1.ECTCの紹介と最近の研究動向、および用語の説明
1.1 ECTCの発表件数の推移や国別/研究機関別投稿状況
1.2 先端半導体パッケージングの分類や動向
1.3 ハイブリッド接合の概要
2.チップレット/インターポーザ/ラージパネル 7件
Session 1: Advances in Fan-Out, Wafer-Level, and Panel-Level Packaging Technologies
Enabling New Applications
・Paper 1. How to Manipulate Warpage in Fan-Out Wafer and Panel Level Packaging
(Fraunhofer IZM/TU Berlin)
・Paper 4. 600 mm x 600 mm Fan-Out Panel Level Package (FOPLP) as an Alternative to
Lead-Frame-Free Quad Flat No Lead (QFN) Package (NEPES/Deca)
・Paper 5. Challenges and Analysis for Pitch 25 µm – 100 µm Mixed Micro Bumps and Interconnection
in Fan-Out Embedded and Interconnection in Fan-Out Embedded Bridge Die With TSV
Package (FO-EB-TSV)(SPIL)
Session 7: Heterogeneous Integration: Systems Design, Signal & Power Delivery, and Process
Optimization
・Paper 1. Next Generation Large Size High Interconnect Density CoWoS-R Package (TSMC)
Session 16: Reliability of High-Density and High-Power Packages
・Paper 2. Reliability Investigations of Advanced Photosensitive Polymer Based RDL Processes
Protected by Inorganic Capping Layers (imec/Veeco)
Session 19: 3D Integration Copper-Copper Hybrid Bonding
・Paper 6. 3.5D Advanced Packaging Enabling Heterogenous Integration of HPC and AI Accelerators
(AMD)
Session 26: Chiplet Interconnect Design and Validation
・Paper 7. Signal Integrity Designs at Organic Interposer CoWoS-R for HBM3-9.2Gbps High Speed
Interconnection of 2.5D-IC Chiplets Integration (Global Unichip Corporation)
3.ハイブリッド接合 70件
Session 2: Advanced Die-to-Wafer Hybrid Bonding for Heterogeneous Integration
・Paper 1. Direct Die-to-Wafer Hybrid Bonding Using Plasma Diced Dies and Bond Pad Pitch Scaling
Down to 2 μm (imec)
・Paper 2. Multi-Functional Self-Assembled Monolayer (SAM) for Chip-to-Chip and Chip-to-Wafer
Hybrid Bonding Yield Enhancement (Tohoku University/T-Micro/JX Metals)
・Paper 3. 3D Heterogeneous IntegrationWith Sub-3 μm Bond Pitch Chip-to-Wafer Hybrid Bonding
(Intel)
・Paper 4. Novel Three-Layer Stacking Process With Face-To-Back CoW 6 μm-Pitch Hybrid Bonding
(Sony)
・Paper 5. Dielectric Stack Optimization for Die-Level Warpage Reduction for Chip-to-Wafer Hybrid
Bonding (IME A*STAR)
・Paper 6. Low Temperature Wafer Level Hybrid Bonding Enabled by Advanced SiCN and Surface
Activation (Yokohama National University/TEL/SK Hynix)
・Paper 7. A Study on D2W Hybrid Cu Bonding Technology for HBM Multi-Die Stacking (Samsung)
Session 8: Sub-Micron Scaling in Wafer-to-Wafer Hybrid Bonding
・Paper 1. Study of Ultra Fine 0.4 μm Pitch Wafer-to-Wafer Hybrid Bonding and Impact of Bonding
Misalignment (Sony)
・Paper 2. 3-Layer Fine Pitch Cu-Cu Hybrid Bonding Demonstrator With High Density TSV for
Advanced CMOS Image Sensor Applications (Grenoble Alps University/CEA-LETI)
・Paper 3. Scaling Cu/SiCN Wafer-to-Wafer Hybrid Bonding Down to 400 nm Interconnect Pitch
(imec)
・Paper 4. Fine Pitch and Low Temperature Nanocrystalline-Nanotwinned Cu and SiCN-to-SiO2
Wafer-to-Wafer Hybrid Bonding (ITRI / Nanya Technology)
・Paper 5. Single-Grain Cu μ-Joint Formation Directed by Selective Under-Seed-Metallurgy (USM) for
Hybrid Bonding (Tohoku Univ./T-Micro/JCU)
・Paper 6. 0.5 μm Pitch Wafer-to-Wafer Hybrid Bonding at Low Temperatures With SiCN Bond Layer
(AMAT/EVG)
・Paper 7. Development of Double Cantilever Beam Technique for Wafer-to-Wafer Bond Energy
Measurement (Micron Technology)
Session 10: Novel 3D Integration and Hybrid Bonding Solutions
・Paper 1. Investigation of Distortion in Wafer-to-Wafer Bonding with Highly Bowed Wafers
(imec/EVG)
・Paper 2. Development of 0.5 μm Pixel 3-Wafers Stacked CMOS Image Sensor With Through Silicon
Deep Contact and In-Pixel Cu-to-Cu Bonding Process (Samsung)
・Paper 3. Non-TCB Process Cu/SiO2 Hybrid Bonding Using Plasma-Free Hydrophilicity Enhancement
With NaOH for Chip-to-Wafer Bonding (National Yang Ming Chiao Tung University / ITRI)
・Paper 4. Novel Low Thermal Budget Bonding Using Single Wafer Thermal Processing System,
Resulting in Excellent Wafer-to-Wafer Hybrid Bonding at sub 0.5um Pitch (AMAT)
・Paper 7. D2W Hybrid Bonding System Achieving Both High-Accuracy and High Throughput With
Minimal Configuration (Toray Engineering/Tohoku University/YNU/University of Tsukuba)
Session 11: Next-Generation Artificial Intelligence, Quantum Computing, and Secure Packaging
・Paper 3. Fine Pitch Nb-Nb Direct Bonding for Quantum Applications
(Grenoble Alps University/CEA-LETI)
Session 12: Artificial Intelligence and Advanced Modeling Approaches
・Paper 4. Deep Convolution Neural Networks for Automatic Detection of Defects Which Impact
Hybrid Bonding Yield (Adeia)
Session 15: Novel Materials and Process for Hybrid Bonding
・Paper 1. Towards Standardization of Hybrid Bonding Interface: In-Depth Study of Dielectrics on
Direct Bonding (Intel /Arizona State University/Washington State University)
・Paper 2. Demonstration of Low Temperature Cu-Cu Hybrid Bonding Using a Novel Thin Polymer
(Mitsui Chemicals)
・Paper 3. Process Challenges in Thin Wafers Fabrication With Double Side Hybrid Bond Pads for
Chip Stacking (IME A*STAR)
・Paper 4. Development of Low Temperature Processable Polyimides for Organic Hybrid Bonding
Applications (Toray / Toray Singapore Research Center)
・Paper 5. Effect of (111) Surface Ratio on the Bonding Quality of Cu-Cu Joints
(National Yang Ming Chiao Tung University)
・Paper 6. Copper Microstructure Optimization for Fine Pitch Low Temperature Cu/SiO2 Hybrid
Bonding(Grenoble Alps University/CEA-LETI)
・Paper 7. Multi-Tier Die Stacking Through Collective Die-to-Wafer Hybrid Bonding
(imec/Brewer Science/SUSS MicroTec)
Session 18: Radio Frequency Antenna-in-Package and Component Design
・Paper 6. RF Modelling and Characterization of TSV and Inductive Links of Hybrid Bonding (imec)
Session 19: 3D Integration Copper-Copper Hybrid Bonding
・Paper 1. A Study of Low Temperature SoIC Targeting 200 nm Bond Pitch (TSMC)
・Paper 2. Low Resistance and High Isolation HD TSV for 3-Layer CMOS Image Sensors
(Grenoble Alps University/CEA-LETI)
・Paper 3. Integrated Hybrid Bonding System for the Next Generation Advanced 3D Packaging
(AMAT/Besi)
・Paper 4. Process Development and Performance Benefits of 0.64 μm – 0.36 μm Pitch Hybrid
Bonding on Intel Process (Intel)
・Paper 5. Methodologies for Characterization of W2W Bonding Strength (imec)
・Paper 7. Facile Wafer-to-Wafer Hybrid Bonding Integration at Sub 0.5 μm Pitch (IME A*STAR)
Session 21: Innovations in Polymer Packaging Materials
・Paper 4. Low-Temperature Polymer Hybrid Bonding With Nanopaticulated Cu and Photosensitive
Acrylic Adhesive (Daicel /T-Micro/Tohoku University)
Session 23: Novel Bonding Technology for Advanced Assembly Substrates and Integration
・Paper 7. High-Throughput Characterization of Nanoscale Topography for Hybrid Bonding by Optical
Interferometry (Adeia)
Session 26: Chiplet Interconnect Design and Validation
・Paper 1. Impact of Pitch Scaling on 3D Die-to-Die Interconnects (imec)
Session 30: Process and Hybrid Bonding Modeling and Characterization
・Paper 1. Modeling of Copper Hybrid Bonding Anneal (TEL)
・Paper 3. Elucidating the Mechanism of Four Corner Voids in Chip-on-Wafer Hybrid Bonding (Sony)
・Paper 6. Finite Element Modeling for Wafer-to-Wafer Direct Bonding Behaviors and Alignment
Prediction (Samsung)
Session 32: Advancement in Copper Hybrid Bonding Technologies Common to Multiple Applications
・Paper 1. A Microstructural Investigation of Sub-1 μm Copper Bonding Contact Structures in
Die-to-Wafer Hybrid Bonding (State Univ. of New York at Binghamton/IBM)
・Paper 2. Low-Temperature Cu-Cu Bonding Using <111>-Oriented and Nanocrystalline Hybrid
Surface Grains (National Yang Ming Chiao Tung University / ITRI)
・Paper 4. Achieving Sub-nm Copper Recess Controllability for Advanced 3D Integration: An
Experimental and Atomic-scale Simulation Study on Wet Atomic Layer Etching Process
(Samsung)
・Paper 5. Quantifying the Electrical Impact of Bonding Misalignment for 0.5 μm Pitch Hybrid
Bonding Structures (TEL America)
・Paper 6. Liquid Surface Tension-Driven Chip Self-Assembly Technology With Cu-Cu Hybrid Bonding
for High-Precision and High-Throughput 3D Stacking of DRAM
(Tohoku Univ./Yamaha Robotics Holdings)
・Paper 7. Wafer-on-Wafer-on-Wafer (WoWoW)Integration Having Large-Scale High Reliability
Fine 1 µm Pitch Face-to-Back (F2B) Cu-Cu Connections and Fine 6 µm Pitch TSVs (Sony)
Interactive Session (これ以降はポスター発表です)
Session 37: Thermo-mechanical Stress and Reliability Analysis for Materials in Future
Packaging
・Paper 6. Multiphysics Overlay Modeling of Monolithic 3D Fusion and Hybrid Bonding Processes
(EVG)
・Paper 17. Thermal Transport Properties of Hybrid Bonding With Passivation
(Seoul National University/Seoul National University of Science and Technology)
・Paper 20. Method to evaluate the adhesion distribution on wafers (Sony)
・Paper 21. Experimental and Numerical Investigation of Cu-Cu Direct Bonding Quality for 3D
Integration (Sungkyunkwan University/BASF)
・Paper 22. Atomistic Simulation Investigation of Various Plasma Surface Activations in SiCN
Dielectric Bonding (TEL)
Session 38: Photonics, mm-Wave Applications & Emerging Technologies
・Paper 14. All-Cu 3D Interconnects as an Alternative to Hybrid Bonding (Meisei University)
Session 39: Bonding Process and Analysis in Next-generation Interconnects
・Paper 2. Hybrid Bonding Technology Chemical Mechanical Planarization Process Optimization
Using Comprehensive 3D Modeling (AMAT/Synopsys)
・Paper 5. A Study on the Surface Activation of Plasma Treatment for Hybrid Bonding Joint
Interface (ASE)
・Paper 7. Inverse Hybrid Bonding With Aluminum Oxide as Infill Using Atomic Layer Deposition
(Georgia Tech./UCSD)
・Paper 12. Low Temperature Nanocrystalline Cu/Polymer Hybrid Bonding With Tailored CMP
Process (ITRI/Brewer Science)
・Paper 15. Low Thermal Budget Fine-Pitch Cu/Dielectric Hybrid Bonding With Cu Microstructure
Modifications (IME A*STAR)
・Paper 21. Low Temperature Cu/SiO2 Hybrid Bonding With Protruding Copper Pads
(Tsinghua University/SMIB: Semiconductor Technology Innovation Center (Beijing)
Corporation)
・Paper 22. Analysis of vacancies in Wafer-Bonding Interface Via Positron Annihilation Lifetime
Spectroscopy (Sony)
・Paper 23. Annealing Effects in Sub-8 μm Pitch Die-to-Wafer Hybrid Bonding
(TEL America/Fraunhofer IZM/SkyWater Technology/BRIDG)
・Paper 27. Aluminum-to-Aluminum and Aluminum-to-Copper Thermal Compression Bonding for
Heterogeneous Integration of Legacy Dielets (UCLA)
・Paper 29. Exploring Bonding Mechanisms of SiCN for Hybrid Bonding
(Yokohama National University/imec/University of Tsukuba)
Session 40: Materials, Manufacturing and Assembly Techniques in Advanced Packaging
Solutions
・Paper 8. Comparison of Organic and Inorganic Dielectric Hybrid Bonding With Highly
<111>-Oriented Nanotwinned Cu (National Yang Ming Chiao Tung University)
・Paper 13. Multi Chip Stacked Memory Module Development Using Chip to Wafer (C2W) Hybrid
Bonding for Heterogeneous Integration Applications (IME A*STAR)
・Paper 15. Fluidic Self Alignment for Hybrid Bonding Using Intel Process (Intel)
・Paper 16. An Advanced Remote-Plasma Assisted Ozone-Ethylene-Radical (OER) Process for
Cu-SiO2 Hybrid Bonding Yield Enhancement
(Meiden Nanoprocess Innovations / Tohoku Univ.)
・Paper 19. A CMP Process for Hybrid Bonding Application With Conventional / nt-Cu and SixNy /
SixOy Dielectrics (Intel / AMAT)
・Paper 26. Room-Temperature Hybrid Bonding of Via-Middle TSV Wafer Fabricated by Direct
Si/Cu Grinding and Residual Metal Removal (AIST/Okamoto Machine Tool Works)
Session 41: Student Posters
・Paper 1. Low Temperature Cu/SiO2 Hybrid Bonding Using Area-Selective Metal Passivation
(Interface Metal) Technology for 3D IC and Advanced Packaging
(National Yang Ming Chiao Tung University/ITRI)
4.光電融合(Co-PKG) 6件
Session 3: Co-Packaged Optics
・Paper 1. High Density Integration of Silicon Photonic Chiplets for 51.2T Co-packaged Optics
(Broadcom/SPIL)
・Paper 3. A surface-mount photonic package with a photonic-wire-bonded glass interposer as a
hybrid integration platform for co-packaged optics
(Sumitomo Electric/FICT/Tokyo Institute of Technology)
・Paper 4. Development of all-photonics-function embedded package substrate using 2.3D RDL
interposer for co-packaged optics (AIST/Kyocera)
・Paper 5. Advanced 3D Packaging of 3.2Tbs Optical Engine for Co-packaged Optics (CPO) in
Hyperscale Data Center Networks (Cisco Systems)
Session 22: Signal & Power Integrity for Advanced Packages and Systems
・Paper 1. High Bandwidth and Energy Efficient Electrical-Optical System Integration Using
COUPE Technology (TSMC)
Session 34: Photonics Integration, Materials, and Processes
・Paper 3. A Compact Wafer-Level Heterogeneously Integrated Scalable Optical Transceiver for
Data Centers (IME A*STAR/Marvell)
□ 質疑応答 □
公開セミナーの次回開催予定
開催日
2024年9月20日(金) 13:00~16:30
開催場所
Live配信セミナー(会社・自宅にいながら受講可能)
受講料
一般受講:本体45,000円+税4,500円
E-Mail案内登録価格:本体42,700円+税4,270円
E-Mail案内登録なら、2名同時申込みで1名分無料
2名で49,500円 (2名ともE-Mail案内登録必須/1名あたり定価半額24,750円)
※テレワーク応援キャンペーン(1名受講)【オンライン配信セミナー受講限定】
1名申込みの場合:受講料( 定価:37,400円/E-mail案内登録価格 35,640円 )
定価:本体34,000円+税3,400円
E-mail案内登録価格:本体32,400円+税3,240円
※1名様でオンライン配信セミナーを受講する場合、上記特別価格になります。
※※お申込みフォームのメッセージ欄に【テレワーク応援キャンペーン希望】とご記載ください。
※他の割引は併用できません。
★【S&T会員登録】と【E-Mail案内登録】の詳細についてはこちらをご参照ください。
※E-Mail案内登録をご希望の方は、申込みフォームのメッセージ本文欄に「E-Mail案内登録希望」と記載してください。ご登録いただくと、今回のお申込みからE-mail案内登録価格が適用されます。
配布資料
- PDFデータ(印刷可)
主催者サイトのマイページよりダウンロードいただきます(開催2日前を目安にDL可となります)。
オンライン配信のご案内
※【Live配信(zoom使用)対応セミナー】についてはこちらをご参照ください
- アーカイブ(見逃し)配信付き
視聴期間:セミナー終了の翌営業日から7日間[9/24~9/30]を予定しています。
※アーカイブは原則として編集は行いません。
※視聴準備が整い次第、担当から視聴開始のメールご連絡をいたします。
(開催終了後にマイページでご案内するZoomの録画視聴用リンクからご視聴いただきます)
備考
※講義中の録音・撮影はご遠慮ください。
※開催日の概ね1週間前を目安に、最少催行人数に達していない場合、セミナーを中止することがございます。
お申し込み方法
★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。