3分でわかる技術の超キホン ポンプ運転上の注意事項・厳選解説

Pocket

 
今回のコラムでは、ポンプを運転する上で注意すべき事項について解説します。
ポンプのオペレーションや保守・管理を担う立場の方々が、絶対に押さえておくべき注意点とその対策を厳選して説明しますので、ぜひ参考にしてください。

 

1.2種類の最小流量

ミニマムフローは、ポンプの過熱損傷を防止するために最小限必要な流量を確保するために設定されます。
ポンプは最高効率点(BEP)において、ポンプ内部における流れの乱れが最も少なく安定した運転状態となります。BEPから離れるほど、流れと羽根車や案内羽根の翼角度との不一致による衝突や逆流が起きて流れが乱れ、初生キャビテーションが発生しやすく、振動が大きくなるなど運転状態が不安定となり、ポンプ部品寿命にも影響が出ます。
ポンプが安定して運転できるための最小流量は、過熱防止のための最小流量よりも大きくなります

ポンプの最小流量には、目的により次の2種類があります

  1. 過熱防止最小流量(Thermal Minimum Flow)
  2. 安定運転最小流量(Minimum Continuous Flow)

ミニフローラインの流量は過熱防止のための最小流量ですので、ポンプ起動後は速やかに安定運転最小流量以上の流量に運転点を移行する必要があります。
 
過熱防止最小流量と安定運転最小流量の関係
 
※関連知識である締切運転と過熱について理解したい方は、本連載コラム第9回「締切運転はポンプの大敵」のページも併せてご参照下さい。

 

2.QHカーブの”山”

ポンプQHカーブは、締切全揚程が最も高く、大流量へ向かって連続右下がりとなりますが、小水量のある点で全揚程が最大となりそこから締切に向かってQHカーブ勾配が左下がりとなる、いわゆる山のあるQH特性となることもあります。
このような山形のQH特性を持つポンプで、吐出流量制御弁とポンプの間に自由表面を持った貯水槽が有る場合に、吐出制御弁開度を絞って山のピーク付近からやや左の小流量側に変化させたときに、サージング現象が発生して、吐出配管系の大きな振動や騒音、流量制御不調というトラブルになります。
 
下図で、QHカーブの山の頂上付近①(流量Q1)から吐出弁を絞って②(流量Q2)の点に移行すると、瞬間的には系統側の圧力はQHピーク付近で運転された圧力であるため、[吐出配管圧力>ポンプ吐出圧力]となって逆流が発生し、締切状態に移行します。
すると系統側の圧力が低下してポンプ吐出圧力が系統圧を上回って、ポンプから再び正方向流れが吐き出されて、山のやや左の運転点に移行して、その後同じように逆流と正流が繰り返さます。
QHカーブが右下がりの領域(システムヘッドカーブ③)では、システム抵抗の変動に対して、配管圧力とポンプ圧力がバランスし、流量はQ3に安定します。
 
山型のQHカーブサージングを発生させる配管系統
 
吐出流量調整弁とポンプの間に自由表面を持つ(空気だまりのある)貯槽があるような系統で、小水量で使用する機会が多いとき、あるいは並列運転を行う系統であるときには、QHカーブに山がなく連続右下がりであるポンプを選定することが重要です。

 

3.水撃(ウォータハンマー)とその対策

停電などでポンプが急に停止した場合、弁を急に開閉した場合、あるいは管内で液体が気化して瞬時に液に戻った場合などに、管内流速が急変して液圧が急激に上昇して、鉄で打撃したような音が発生することがあります。
これを「水撃」(ウオータハンマー, water hammer)とよび、配管やポンプに損傷を及ぼすことがあるので水撃が発生しないように対策を講じる必要があります。

対策としては、管路遮断弁の開閉速度を緩やかにする、吐出管路に自動圧力調整弁(リリーフ弁)を設ける、吐出管路にサージタンクあるいは空気室を設ける、吐出逆止弁にバイパスを設ける、など配管系統側で講じるものがほとんどです。
ポンプ側でとれる対策として、停電などで急にポンプ駆動機が停止しても、慣性効果で回転速度が緩慢に低下して流速変化率を小さくする方法があります。ポンプと駆動機を結合する軸継手を大きいものにするか、フライホイールを別に設けて慣性モーメントを大きくする方法です。
 
ポンプにフライホイールを別に設けて慣性モーメントを大きくする

 

4.逆転(逆回転)とその対策

並列運転系統で、1台が停止中に、停止しているポンプが回転を拘束されない状態で置かれて、吸込み弁が開かれた状態であるときに、停止ポンプの吐出逆止弁が故障して漏れが生じると、運転中ポンプから吐き出された配管系統圧力が停止中ポンプに作用して停止ポンプが逆回転します。

プラント操業を止めることを極力避けたいプラントでは、ポンプ3台として常時2台運転、1台は予備スタンドバイとする系統とすることがよくありますが、このような系統で起こり得る現象です。
停止ポンプの吸込弁を閉止すれば逆転を防止することはできますが、この場合は低い圧力で設計されたポンプ吸込フランジと吸込み配管に運転中ポンプからの吐出圧力が作用して危険ですので、吸込み弁は閉めるべきではありません

ポンプ吐出側から高圧水が逆流した場合に、停止中ポンプがどのくらいの回転速度で逆転するかは、ポンプ完全特性という線図から求めることができます。
条件によっては、正回転の場合の定格回転速度を上回る高速で逆転することがあり、羽根車の強度や、回転体の振動などの問題を生じることもあります。逆転するとポンプ回転体のネジが緩み方向に力が作用するのでネジの弛緩による不具合が生じることがあります。

逆転防止のために、ポンプ回転軸にラチェット機構を設けて正回転時にのみ回転を許容する方法もありますが、構造が複雑になるので、通常は採用しません。
実用的な対策としては、回転体のネジ部には回り止めを施すとともに、ポンプ回転軸に逆転検出器を設けて、逆転を検知したら吐出弁を直ちに閉止するロジックを組むことが挙げられます。また、軸受が強制給油型の場合には、軸受の焼付きを防止するため逆転の検知で直ちに補助油ポンプを起動して、軸受に給油を行うこともロジックに組み入れます。

ポンプの逆転対策・圧力計による検出
 

5.吸込ストレーナの目詰り

ポンプに硬い異物が侵入して、摺動部の狭い隙間に入り込むと、摺動表面を傷つけ、最悪の場合は焼き付きやかじり付きなどの重大損傷に至る恐れもあるので、ポンプ吸込側に異物侵入防止のためのストレーナを設置することがあります。

プラント立ち上げ試運転時は、配管内に溶接スラグや建設中に混入した粉塵などが残留している可能性があり、比較的目の細かいストレーナ(60メッシュ程度)を設置することが多いですが、目の細かいストレーナは捕捉した異物で目詰まりがしやすく、目詰まりでストレーナの差圧が増大するとポンプ吸込圧力が低下してNPSHAが不足しキャビテーション発生に至る可能性があります。

試運転時はストレーナ差圧監視を強化して、差圧が警報レベルに達したらすぐにポンプを停止してストレーナの清掃をして必要な吸込圧力が確保されるように注意を払う必要があります。試運転が進むと配管内もきれいになり、細かい異物は除去されるので、常用運転に移行したらストレーナは取り払うか、目詰まりのしにくい目の粗いストレーナ(20~40メッシュ)と交換するようにします。

吸込みストレーナと差圧監視

 

6.過大流量

負荷遮断など何らかの原因でシステム抵抗が減少する、あるいは送水先圧力低下などの原因により全揚程が減少すると流量が増大します。流量が過大流量側に増大した場合、次の2点の注意が必要です。

(1)キャビテーション発生有無の検討

NPSH3は大流量になるほど増大します。
[※詳しくは、連載②「ポンプとキャビテーション」も併せてご参照ください。]

(2)遠心ポンプの場合:ポンプ駆動機(モータなど)の馬力オーバー

軸流ポンプの場合は、大流量に移行するにつれて軸動力は下がるので馬力上の制限はありません

下図でシステム抵抗が正常時のAからBに変化(抵抗減少)した時、ポンプ運転点は①から②へ移行します。
このとき②が、上記(1)(2)で制約される最大許容流量を超えないことが重要です。
 
過大流量と必要吸込みヘッド(NPSH3)、有効吸込みヘッド(NPSHA)
 

ということで、ターボ形ポンプを運転する上で注意すべき様々な事項について正しい知見を持ちながら、健全なポンプ運転管理を行うようにしましょう。
 
 
(日本アイアール株式会社 特許調査部 S・Y)
 

関連コラム(3分でわかる技術の超キホン)

 

「ポンプ」の運転について詳しく学びたい方におススメのセミナーはこちら
Pocket

スぺシャルコンテンツ
Special Contents

導入・活用事例

テキスト/教材の制作・販売