AI外観検査導入のための基礎と進め方・留意点【提携セミナー】
開催日時 | 【LIVE配信】2024/12/9(月) 12:30~16:30 , 【アーカイブ配信】12/10~12/17 (何度でも受講可能) |
---|---|
担当講師 | 森本 雅和 氏 |
開催場所 | 【WEB限定セミナー】※会社やご自宅でご受講下さい。 |
定員 | - |
受講費 | 非会員: 49,500円 (本体価格:45,000円) 会員: 46,200円 (本体価格:42,000円) |
AI外観検査導入のための基礎と進め方・留意点
《AI画像認識技術の基礎、導入プロジェクトの進め方、品質保証への対応》
【提携セミナー】
主催:株式会社R&D支援センター
◆セミナー趣旨
ここ数年、AI(人工知能)の応用が急速に進展しています。劇的な認識率の向上をもたらしAI分野を発展させたのが、「Deep Learning(深層学習)」のアルゴリズムであり、実装が容易なライブラリの登場により、画像認識を中心に利用例が報告されています。
かたや、製造現場ではAI外観検査(画像識別)を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。画像データの前処理にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。
そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。
◆習得できる知識
- AI画像認識技術の基礎・原理
- AI画像認識システム導入の進め方
- 画像取得の際の留意点
◆受講対象
- AI関連技術・画像認識技術による外観検査業務の効率化や自動化・無人化を検討中の方、着手し始めた方
◆必要な前提知識
- 特に予備知識は必要ありません。基礎から解説いたします
◆キーワード
外観検査,AI,画像検査,セミナー
担当講師
兵庫県立大学 大学院工学研究科 電子情報工学専攻 准教授 博士(工学)森本 雅和 氏
【略 歴】
1998年3月 大阪大学大学院 工学研究科 通信工学専攻 博士後期課程修了
1998年4月~2004年3月 姫路工業大学 工学部 助手
2004年4月~2014年9月 兵庫県立大学大学院 工学研究科 助手・助教
2014年10月~ 兵庫県立大学 大学院 工学研究科 准教授
2019年4月~ 兵庫県立大学 先端医工学研究センター 副センター長
2019年4月~ 兵庫県立大学 人工知能研究教育センター 兼務
セミナープログラム(予定)
1.AI画像認識システムの開発実例紹介
1-1 パン識別システム「BakeryScan」
1-2 不織布の外観検査システム
1-3 油圧部品の外観検査システム
1-4 金属チェーンの外観検査システム
1-5 レンガの外観検査システム
2.AI外観検査プロジェクトのはじめ方
2-1 AI外観検査の進め方・概念実証(PoC)
2-2 機械学習を意識した画像データの撮影
2-3 学習が難しい画像
2-4 学習しやすい画像のための前処理
3.学習データの量と質の課題
3-1 学習データの準備にかかる負荷(画像の収集、ラベルの付与)
3-2 学習データはどの程度必要か
3-3 外観検査における学習データ不均衡の問題
3-4 学習データの拡張,生成AIの活用
3-5 ラベル付き公開データセットと転移学習による対応
4.識別根拠の課題と品質保証への対応
4-1 Deep Learningは内部分析が困難
4-2 説明可能性・解釈性(XAI)に関する技術
4-3 Grad-CAMによる注目領域確認
4-4 品質保証への対応・段階的なAI外観検査の導入
5.AI外観検査システム導入の進め方まとめ
5-0 外部資金の獲得
5-1 不良品の定義確認と不良品サンプルの収集
5-2 撮影方法の検討
5-3 撮影装置の導入とデータ収集からPoC
5-4 初期判定モデルを作成し,プロトタイプとして導入
5-5 モデル改良と精度検証の繰り返し
5-6 本格運用開始後の維持管理
5-7 外観検査プロジェクトを成功させるために
【質疑応答】
公開セミナーの次回開催予定
開催日
【LIVE配信】2024/12/9(月) 12:30~16:30
【アーカイブ配信】12/10~12/17 (何度でも受講可能)
開催場所
【WEB限定セミナー】※会社やご自宅でご受講下さい。
受講料
非会員: 49,500円 (本体価格:45,000円)
会員: 46,200円 (本体価格:42,000円)
会員の方あるいは申込時に会員登録される方は、受講料が1名49,500円(税込)から
- 1名46,200円(税込)に割引になります。
- 2名申込の場合は計49,500円(2人目無料)になります。両名の会員登録が必要です。
※セミナー主催者の会員登録をご希望の方は、申込みフォームのメッセージ本文欄に「R&D支援センター会員登録希望」と記載してください。ご登録いただくと、今回のお申込みから会員受講料が適用されます。
※R&D支援センターの会員登録とは?
ご登録いただきますと、セミナーや書籍などの商品をご案内させていただきます。
すべて無料で年会費・更新料・登録費は一切かかりません。
備考
- セミナー資料は開催前日までにお送りいたします。
ご自宅への送付を希望の方はご住所などをメッセージ欄に明記してください。
無断転載、二次利用や講義の録音、録画などの行為を固く禁じます。
お申し込み方法
★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。
★【LIVE配信】、【アーカイブ配信】のどちらかご希望される受講形態をメッセージ欄に明記してください。