プロセスインフォマティクスにおけるデータ収集・解析手法と具体的活用事例【提携セミナー】
おすすめのセミナー情報
もっと見る開催日時 | 2024/3/11(月)10:00~17:00 |
---|---|
担当講師 | 金子 弘昌 氏 |
開催場所 | Zoomによるオンライン受講 |
定員 | 30名 |
受講費 | 60,500円(税込) |
☆ 勘・コツ・すり合わせに依存しないデータ駆動型のプロセス開発のために!
プロセスインフォマティクスにおける
データ収集・解析手法と具体的活用事例
【提携セミナー】
主催:株式会社技術情報協会
講座内容
- プロセスインフォマティクスの概要およびデータ解析・機械学習の基礎
- 粉体プロセスインフォマティクス
- ハイスループット実験による効率的データ収集の実施法
習得できる知識
☆ 求められるプロセスパラメータと、そこから最適条件を見つけるための解析手法
☆ 高効率なプロセスパラメータの発見、効率的なデータ収集の手法
担当講師
第1部:明治大学 理工学部 准教授 金子 弘昌 氏
第2部:東京大学 大学院 工学系研究科 機械工学専攻 准教授 長藤 圭介 氏
第3部:大阪大学 大学院工学研究科 教授 小野 寛太 氏
セミナープログラム(予定)
【10:00~12:00】
【第1部】 プロセスインフォマティクスの概要およびデータ解析・機械学習の基礎
明治大学 理工学部 准教授 金子 弘昌 氏
【講座主旨】
化学・化学工学データおよび機械学習を活用して、分子・材料・プロセスの設計やプロセス管理を高度化することが一般的になっている。分子設計では、分子の物性・活性とその化学構造の分子記述子の間で数理モデルを構築し、モデルに基づいて新たな化学構造を設計する。材料設計では、材料の物性・活性・特性と材料の実験条件・製造条件の間でモデルを構築し、モデルに基づいて新たな材料を設計する。プロセス設計やプロセス管理では、プロセスのパラメータの間でモデルを構築し、モデルに基づいて望ましいプロセスを設計し管理する。分子・材料設計の研究・開発はケモインフォマティクスやマテリアルズインフォマティクス、プロセス設計やプロセス管理の研究・開発はプロセスインフォマティクスと呼ばれる。本講演では、特にプロセスインフォマティクスの中で、装置・化学工場・プロセスのデータ解析・機械学習による効率的な設計や、プロセスの運転管理・制御方法を対象にして解説する。さらに、プロセスインフォマティクスを高度化する研究例を説明する。また、プログラミングなしでそれらの計算および種々の設計ができるクラウドサービス Datachemical LAB を紹介する。
【講座内容】
1.プロセスインフォマティクス
1.1 プロセス設計・装置設計
1.2 ソフトセンサー
1.3 用いられるデータ例
1.4 モデリング
1.5 プロセス設計・装置設計・ソフトセンサー
2.データ解析・機械学習
2.1 実験計画法
2.2 適応的実験計画法
2.3 線形回帰分析
2.4 非線形回帰分析
2.5 適応型ソフトセンサー
2.6 Datachemical LAB
3.研究事例・応用事例
3.1 プロセス設計・装置設計の実例
3.2 プロセス設計・装置設計の研究例
3.3 ソフトセンサーの実例
3.4 ソフトセンサーの研究例
【質疑応答】
【12:45~14:45】
【第2部】 粉体プロセス開発の高スループット化のための粉体プロセスインフォマティクス
東京大学 大学院 工学系研究科 機械工学専攻 准教授 長藤 圭介 氏
【講座主旨】
マテリアルズインフォマティクスで開発された新材料も,従来の材料も,その料理方法,すなわちプロセス次第で,最終性能が大きく変わります.日本の強みであるプロセス開発は,DXの時代でハイスループット化が求められています.その一つの解決策としてのプロセスインフォマティクスを粉体プロセスの事例で紹介します.
【講座内容】
1.背景: 材料開発とプロセス開発
2.プロセスインフォマティクスとは
2.1 様々な「インフォマティクス」
2.2 プロセスインフォマティクスの広義・狭義
3.仮説駆動型開発とデータ駆動型開発
3.1 機械学習の恩恵とDXの効果
3.2 研究の歴史から紐解く研究開発手法
3.3 求められるバイスループット開発に向けて
4.粉体プロセスの事例
4.1 粉体プロセスの種類と原理
4.2 プロセスパラメータのベイズ最適化
4.3 最適化で得られるヒラメキとヒューマン・イン・ザ・ループ
5.他分野への展開
5.1 材料合成プロセス: 結晶成長、フロー化学
5.2 生産プロセス: 成形、工作、溶接、3Dプリンタ
5.3 スマートラボ/スマートファクトリー
6.今後の日本のプロセス開発のあり方
【質疑応答】
【14:45~16:15】
【第3部】 ハイスループット実験による効率的データ収集の実施法
大阪大学 大学院工学研究科 教授 小野 寛太 氏
【講座主旨】
新物質合成の新たな方法論として、ハイスループット実験、実験自動化、ラボラトリーオートメーション、自律実験などが注目を浴びている。本講座では主にデータ収集という観点から、物質・材料の計測・分析・評価に主眼を置き、大量の試料についてハイスループット実験の実現へ向けた考え方を紹介する。自律実験に不可欠となる効率的な計測・実験とは何かという基礎的な考え方を紹介することから始め、自動・自律実験により物質・材料の大量のデータを効率的に収集する方法、得られた大量のデータを解析し物質・材料の研究開発の生産性を高める方法について述べる。
【講座内容】
- ハイスループット実験の概要
- 実験自動化、ラボラトリーオートメーション、自律実験の現状
- 能動学習(適応型実験計画法)を用いた実験の最適化
- 能動学習(適応型実験計画法)の基礎
- ハイスループット実験への能動学習の適用
- 実験自動化のための実験終了判定
- ハイスループット実験のための高精度・高速・高効率なデータ収集
- 大量の実験データの定性解析
- 大量の実験データの定量解析
- 自律実験へ向けた実験データの解釈の自動化
【質疑応答】
公開セミナーの次回開催予定
開催日
2024/3/11(月)10:00~17:00
開催場所
Zoomによるオンライン受講
受講料
1名につき60,500円(消費税込・資料付き)
〔1社2名以上同時申込の場合1名につき55,000円(税込)〕
備考
資料は事前に紙で郵送いたします。
お申し込み方法
★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。
※お申込後はキャンセルできませんのでご注意ください。
※申し込み人数が開催人数に満たない場合など、状況により中止させていただくことがございます。