画像認識技術を用いたAI外観検査の現場導入事例と精度向上指針【提携セミナー】

AI外観検査

画像認識技術を用いたAI外観検査の現場導入事例と精度向上指針【提携セミナー】

開催日時 未定
担当講師

森本 雅和 氏

開催場所

Live配信セミナー(リアルタイム配信)

定員 -
受講費 未定

~画像認識技術の基礎・原理~
~画像認識システムの実際、導入実例・運用方法~
~識別根拠の課題と品質保証への対応~

 

画像認識技術を用いた
AI外観検査の現場導入事例と精度向上指針

 

【提携セミナー】

主催:サイエンス&テクノロジー株式会社

 


 

ここ数年、AI(Artificial Intelligence、人工知能)の応用が急速に進展しています。劇的な認識率の向上をもたらしAI分野を発展させたのが、脳の働きからヒントを得た学習手法である「Deep Learning(深層学習)」のアルゴリズムであり、実装が容易なライブラリの登場により、画像認識を中心に利用例が報告されています。

 

かたや、製造現場ではAI外観検査(画像識別)を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。学習データ(画像データ)の前処理(データクレンジング)にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。

 

そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。さらには、導入後の運用を通じての精度向上のための考え方にも触れます。

 

担当講師

兵庫県立大学 大学院工学研究科 電子情報工学専攻 准教授 博士(工学) 森本 雅和 氏

 

セミナープログラム(予定)

1.AI画像認識システムの動向と導入基礎
1.1 国内外のAI画像認識の最新事例
1.2 AI画像認識システムのメリット
1.3 AI画像認識システム導入時の留意点
1.4 「機械学習」と「深層学習」の選択

 

2.AI画像認識システムの各種実例
2.1 パン識別システム「BakeryScan」の特徴と実際
2.1.1 BakeryScanのシステム構成
2.1.2 BakeryScanの画像処理(特徴量の抽出方法等)
2.1.3 パン識別にかかる課題
2.1.4 現場導入時の課題
2.1.5 BakeryScanのアルゴリズムの改良
2.2 不織布画像検査システムの特徴と実際
2.2.1 不織布の異物検査
2.2.2 既存の画像検査システムの課題
2.2.3 不織布画像検査システムの構成と特徴
2.2.4 機械学習による異物判別
2.3 油圧部品についての自動外観検査システムの特徴と実際
2.3.1 外観検査の課題
2.3.2 正常・異常判別と機械学習による2クラス分類
2.3.3 AIの限界とデータセットの不均衡
2.3.4 ONE Class SVM(OCSVM)による良品学習
2.3.5 OCSVMの課題とVAEによる異常検出
2.3.6 導入した外観検査システムとロボットのハンドカメラによる撮像
2.3.7 VAEによる傷検出と誤検出の改善

 

3.AI外観検査のはじめ方と機械学習のためのを意識した画像データ準備・前処理
3.1 AI外観検査の進め方
3.1.1 検査項目の網羅と評価基準の明確化 学習データの取集と用意
3.1.2 試作開発の前段階における検証各種機械学習の検証
3.1.3 転移学習の活用
3.1.4 求められる人材・スキル
3.2 機械学習を意識した画像データ(学習データ)の準備
3.2.1 画像データの形式
3.2.2 学習データ(データセット)の準備
3.2.3 必要な学習データ
3.3 学習が難しい画像
3.3.1 撮影環境や条件のばらつき
3.3.2 NG・OKの差異がわかりにくい
3.3.3 キズなど一方向からでは見づらいなど
3.4 学習しやすい画像のための前処理:そのノウハウ・実際
3.4.1 画像のノイズ/歪みなどを取り除く
3.4.2 明るさや色合いを調整/輝度調整
3.4.3 オブジェクトの輪郭を強調
3.4.4 領域抽出

 

4.学習データの量と質の課題
4.1 学習データの準備にかかる負荷(画像の収集、ラベルの付与)
4.2 学習データはどの程度必要か
4.3 外観検査における学習データの質の課題(データの不均衡)
4.4 学習データの拡張(Data Augmentation)
4.5 ラベル付き公開データセットと転移学習による対応

 

5.識別根拠の課題と品質保証への対応
5.1 Deep Learningは内部分析が困難
5.2 説明可能性・解釈性(XAI)に関する技術
5.3 Deep Learningが着目しているところ(ネットワークの可視化)
5.4 品質保証への対応(AI外観検査と目視検査との連携/段階的なAI外観検査の導入)

 

6.AI画像認識システム導入の進め方
6.1 要求定義の取りまとめ
6.2 AI機能の選定
6.3 社内教育とプロジェクトの立ち上げ方(産学連携助成の活用等)
6.4 学習データの準備とその留意点
6.5 概念実証(PoC)の特徴・考え方・進め方
6.6 ラインでの実運用
6.7 運用による精度向上

 

質疑応答

 

公開セミナーの次回開催予定

開催日

未定

 

開催場所

未定

 

受講料

未定

 

配布資料

  • 製本テキスト(開催前日着までを目安に発送)
    ※セミナー資料はお申し込み時のご住所へ発送させていただきます。
    ※開催日の4~5日前に発送します。
    開催前日の営業日の夕方までに届かない場合はお知らせください。
    ※開催まで4営業日~前日にお申込みの場合、セミナー資料の到着が、
    開講日に間に合わない可能性がありますこと、ご了承下さい。

 

オンライン配信のご案内【ライブ配信(Zoom使用)セミナー】

  • 本セミナーはビデオ会議ツール「Zoom」を使ったライブ配信セミナーとなります。
  • お申込み受理のご連絡メールに接続テスト用のURL、ミーティングID、パスワードが記されております。
    「Zoom」のインストールができるか、接続できるか等をご確認下さい。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • 開催日時にリアルタイムで講師へのご質問も可能です。
  • タブレットやスマートフォンでも視聴できます。

 

備考

  • 資料付(郵送)
  • 講義中の録音・撮影はご遠慮ください。

 

お申し込み方法

★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。

 

おすすめのセミナー情報

技術セミナー検索

製造業向けeラーニング_講座リスト

在宅勤務者用WEBセミナーサービス

スモールステップ・スパイラル型の技術者教育プログラム

資料ダウンロード

講師紹介

技術の超キホン

そうだったのか技術者用語

機械設計マスター

技術者べからず集

工場運営A to Z

生産技術のツボ

技術者のための法律講座

機械製図道場

公式Facebookページ

スぺシャルコンテンツ
Special Contents

導入・活用事例

テキスト/教材の制作・販売