マテリアルズインフォマティクスを活用した材料開発の実践とベイズ最適化の適用【提携セミナー】
おすすめのセミナー情報
開催日時 | 2023/2/7(火)10:00~17:00 |
---|---|
担当講師 | 新明 健一 氏 |
開催場所 | Zoomによるオンライン受講 |
定員 | 30名 |
受講費 | 66,000円(税込) |
★実際の開発事例からMIで成果を出すポイントや見えてきた課題を掴むて報告
マテリアルズインフォマティクスを活用した
材料開発の実践とベイズ最適化の適用
【提携セミナー】
主催:株式会社技術情報協会
講座内容
- マテリアルズインフォマティクスの導入、データ整備と材料開発への活用事例
- マテリアルズインフォマティクスを活用したポリマーの効率設計
- マテリアルズインフォマティクスを活用した無機半導体光材料の開発
- 材料開発へのベイズ最適化の適用とそのポイント
習得できる知識
- 素材、材料開発を加速するためのMI導入の事例
- MIを進めるために必要とされる組織、人材、技術要件
- MIを素材、材料開発に適用するために必要とされる実験計画、データ利活用の実践方法
- MIの素材、材料開発への活用事例
- MIを進める上での環境構築の考え方
- 第一原理計算の基本的な考え方と運用法の実例
- 機械学習を用いた分析の基本的な考え方と運用の実例
- ベイズ最適化の基礎
- ベイズ最適化を材料開発に適用する上でのポイントや注意点
担当講師
【第1部】積水化学工業(株) 先進技術研究所 情報科学推進センター MI推進グループ グループ長 新明 健一 氏
【第2部】昭和電工(株) 融合製品開発研究所 計算科学情報センター リサーチャー 南 拓也 氏
【第3部】富士フイルム(株) ICT戦略部 インフォマティクス研究所 研究員 井野 雄介 氏
【第4部】東京工業大学 物質理工学院 応用化学系 特任助教 中山 亮 氏
セミナープログラム(予定)
<10:00~11:30>
1.マテリアルズインフォマティクスの導入、データ整備と材料開発への活用事例
積水化学工業(株) 新明 健一 氏
【講座概要】
多くの素材・材料企業が、マテリアルズ・インフォマティクス(MI)などのデータサイエンスを活用したデータ駆動型の研究開発体制への変革を進めている。当社においても、材料開発、シミュレーション、評価分析等の幅広い専門領域の人材が協創することによって、独自のMIを推進し、近年では、データ駆動型開発で提案された材料の顧客採用や現場での実装など、実際の成果が見えてきている。本講座では、素材・材料開発において、有効にMIを活用するために、当社がおこなってきたMI推進の戦略、人材育成、データ活用の実践、そしてMIの活用事例について述べる
1.当社R&Dの目指す姿
2.MIの導入
2.1 MIによって期待すること
2.2 MI推進に必要な要件と効果を最大化するための当社の取り組み
3.MIを活用し開発を推進できる人材育成
3.1 材料開発力vs データサイエンス力
3.2 MI人材育成の見える化・仕組み化、そして全社展開へ
4.材料・素材開発を加速するために求められるMI技術
4.1 実験計画法、データ取得、MIへの展開
4.2 データベースプラットフォーム構築
5.MIの材料・素材開発への活用事例
5.1 フィルム製品の自動配合設計による品質予測システムの構築
5.2 押出成形製品における添加剤配合設計
5.3 IT関連部材原料の構造設計
6.今後の展開
【質疑応答】
<12:10~13:40>
2.マテリアルズインフォマティクスを活用したポリマーの効率設計
昭和電工(株) 南 拓也 氏
【講座概要】
ポリマー系におけるマテリアルズインフォマティクス(MI)の活用事例として、ベイズ最適化による熱可塑ポリマー探索と、熱硬化性フィルムの原料配合の最適化の研究事例を紹介する。量子化学計算と機械学習との比較や、構築した予測モデルの適用限界、実験研究者による樹脂配合設計との比較についても言及する。
1.マテリアルズインフォマティクス(MI)について
1.1 はじめに
1.2 材料開発における課題
2.活用事例1:熱可塑性ポリマーの効率的設計
2.1 予測モデル構築
2.2 機械学習と計算科学との比較
2.3 ポリマー物性予測と適用限界
2.4 ベイズ最適化による効率的なポリマー設計
3.活用事例2:熱硬化性樹脂フィルムの設計
3.1 原料配合系の予測モデル構築
3.2 原料配合の探索
3.3 熟練研究者と機械学習モデルとの比較
4.まとめ
【質疑応答】
<13:50~15:20>
3.マテリアルズインフォマティクスを活用した無機半導体光材料の開発
富士フイルム(株) 井野 雄介 氏
【講座概要】
光吸収材料の開発においては、用途に合わせた屈折率やバンドギャップを示す物質を選択することが重要である。これらの材料探索におけるマテリアルズ・インフォマティクス(MI)技術について、当社での取り組みを題材に、基礎となる知識・進め方の一例についてご紹介したい。
1.マテリアルズ・インフォマティクス環境の構築
2.無機材料におけるマテリアルズ・インフォマティクスの実例
2.1 テーマの設定・予備知識
2.2 計算シミュレーションによる材料物性予測と結果
2.3 機械学習による物性予測と結果
3.まとめ、マテリアルズ・インフォマティクスとDXについて
【質疑応答】
<15:30~17:00>
4.材料開発へのベイズ最適化の適用とそのポイント
東京工業大学 中山 亮 氏
【講座概要】
本講演では、材料研究者の目線から見た際の、ベイズ最適化を材料開発に適用する上でのポイントや注意点に関して紹介します。
1.背景 AIやロボットを活用した研究開発の重要性
1.1 材料合成における現在の課題 -探索空間の多次元化-
1.2 ベイズ最適化とロボットを組み合わせた「自律的」物質合成とは
1.3 AI、ロボット、研究者が協働するデジタルラボラトリとは
1.4 デジタルラボラトリが研究環境に与えるインパクト
2.材料開発の現場でベイズ最適化を活用するには?
2.1 ベイズ最適化の基礎
2.2 ベイズ最適化による合成条件最適化のシミュレーション
~何回実験すれば最適化が完了するのか?~
2.3 スパース推定を用いたベイズ最適化
2.4 複数のサンプルを並列処理するには?
2.5 複数の物性値を最適化するには?
2.6 適切な課題設定の方法は?
2.7 ベイズ最適化で従来より優れた材料は開発できる?
2.8 ベイズ最適化を実際に行うには?
【質疑応答】
公開セミナーの次回開催予定
開催日
2023/2/7(火)10:00~17:00
開催場所
Zoomによるオンライン受講
受講料
1名につき66,000円(消費税込・資料付き)
〔1社2名以上同時申込の場合1名につき60,500円(税込)〕
備考
資料は事前に紙で郵送いたします。
お申し込み方法
★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。
※お申込後はキャンセルできませんのでご注意ください。
※申し込み人数が開催人数に満たない場合など、状況により中止させていただくことがございます。