化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法【提携セミナー】
開催日時 | 【LIVE配信】2025/5/15(木)13:00~16:00 , 【アーカイブ配信】5/16(金)~5/30(金) |
---|---|
担当講師 | 村上 裕哉 氏 |
開催場所 | 【WEB限定セミナー】※会社やご自宅でご受講下さい。 |
定員 | 30名 ※現在、お申込み可能です。満席になり次第、募集を終了させていただきます。 |
受講費 | 非会員: 49,500円 (本体価格:45,000円) 会員: 46,200円 (本体価格:42,000円) |
化学工学におけるビッグデータ非依存の
ニューラルネットワーク活用手法
《基礎から応用まで》
【提携セミナー】
主催:株式会社R&D支援センター
◆セミナー趣旨
近年、機械学習やAIといった言葉がどこでも聞かれるようになりましたが、AIの中にも様々なバリエーションが存在します。本講演会では、その中でも特にニューラルネットワークに焦点を置いてその利活用手法について解説します。ニューラルネットワークは万能な関数とも呼ばれ、様々なタスクに利用できる一方、その万能さゆえに「過学習」と呼ばれる汎化性能が低下する現象を避ける工夫が必要になります。特にデータが限られた系での使用では、その特性を理解してタスクに応じた工夫を加えながら利用することが重要です。講演会では「実用的なシーンでニューラルネットワークを利用してみたいが、何から手をつければよいか分からない」という悩みを抱えた初学者を対象とし、ニューラルネットワークの利点・欠点を説明したうえで、様々な特性を持ったニューラルネットワークを紹介し、どのようなシーンで応用ができるかを解説します。
◆習得できる知識
ニューラルネットワークの利点や欠点を理解したうえで、実用的なデータ解析に利用する方法を習得できる。
◆受講対象
機械学習の利用を検討しているが、具体的な利用方法について悩んでいる方。
◆必要な前提知識
特に予備知識は必要ありません。基礎から解説いたします。
◆キーワード
ニューラルネットワーク,機械学習,化学反応解析,物性推算,セミナー
担当講師
静岡大学
工学領域化学バイオ工学系列 講師
村上 裕哉 氏
【ご経歴等】
2018年4月 – 2020年3月 日本学術振興会, 特別研究員 (DC2)
2020年4月 – 2024年3月 東京理科大学, 工学部 工業化学科, 助教
2023年4月 – 2024年3月 東京電機大学, 工学部 応用化学科, 非常勤講師 (兼任)
2024年4月 – 静岡大学, 学術院工学領域 化学バイオ工学系列, 講師
現在に至る
セミナープログラム(予定)
1.機械学習の基本について
1-1.古典的なデータ解析手法と機械学習の特性の比較
1-2.過学習とビッグデータの必要性
1-3.ニューラルネットワークの基本原理
(1)ニューラルネットワークの構造
(2)誤差逆伝播法の原理
2.様々なニューラルネットワークとその利用方法
2-1.基本となるニューラルネットワーク
2-2.時系列データを対象としたニューラルネットワーク
(1)RNN
(2)LSTM
(3)NeuralODE
2-3.多次元データを対象としたニューラルネットワーク
(1)1次元畳込み型ニューラルネットワーク
(2)多次元畳込み型ニューラルネットワーク
3.小データ系への応用を指向したアプローチ
3-1. 一般的なニューラルネットワークに対するアプローチ
(1)ハイパーパラメーターの調整
(2)クロスバリデーション
(3)正則項・制約条件の導入
(4)事前学習とファインチューニング
3-2. 化学反応解析のためのアプローチ
(1)物質収支計算の導入
(2)理論的知見との整合性の担保
(3)時系列データを利用した学習
3-3. 化学物質の物性推算のためのアプローチ
(1)分子記述子について
(2)理論計算結果の活用
公開セミナーの次回開催予定
開催日
【LIVE配信】2025/5/15(木)13:00~16:00
【アーカイブ配信】5/16(金)~5/30(金)
開催場所
【WEB限定セミナー】※会社やご自宅でご受講下さい。
受講料
非会員: 49,500円 (本体価格:45,000円)
会員: 46,200円 (本体価格:42,000円)
会員(案内)登録していただいた場合、通常1名様申込で49,500円(税込)から
- 1名で申込の場合、46,200円(税込)へ割引になります。
- 2名同時申込で両名とも会員登録をしていただいた場合、計49,500円(2人目無料)です。
※LIVE配信とアーカイブ配信(見逃し配信)両方の視聴を希望される場合
会員価格で1名につき49,500円(税込)、2名同時申込で60,500円(税込)になります。
メッセージ欄に「LIVEとアーカイブ両方視聴」と明記してください。
※セミナー主催者の会員登録をご希望の方は、申込みフォームのメッセージ本文欄に「R&D支援センター会員登録希望」と記載してください。ご登録いただくと、今回のお申込みから会員受講料が適用されます。
※R&D支援センターの会員登録とは?
ご登録いただきますと、セミナーや書籍などの商品をご案内させていただきます。
すべて無料で年会費・更新料・登録費は一切かかりません。
備考
- 資料付(PDFデータでの配布)※紙媒体での配布はございません。
無断転載、二次利用や講義の録音、録画などの行為を固く禁じます。
お申し込み方法
★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。
★【LIVE配信】、【アーカイブ配信】、【LIVEとアーカイブ両方視聴】のいずれかから、ご希望される受講形態をメッセージ欄に明記してください。