ベイズ統計入門【提携セミナー】
開催日時 | 未定 |
---|---|
担当講師 | 青木 義充 氏 |
開催場所 | 未定 |
定員 | - |
受講費 | 未定 |
★ベイズ統計を基礎から学びたい方におススメのセミナーです
ベイズ統計入門
≪ベイズ統計の考え方、推定手法、解析の進め方について≫
【提携セミナー】
主催:株式会社情報機構
データを解析している際に,「データ以外の情報を利用した解析をしたい」と思ったことはありませんか?ベイズ統計学では,データから得られる情報だけでなく,事前に知りえた情報(主観的に設定した情報)を利用して推測していきます.本講義では,一般的な統計学の手法との違いを意識しながら,ベイズ統計学の考え方を学ぶことにより,データとそれ以外の情報を組み合わせた推論方法を習得することができます.
また,ベイズ統計学を学んだことのある方の中には,手法について理解はできたが,どのように用いればよいか分からない人もいるかもしれません.特に,一般的な統計学の手法を適用できる問題では,ベイズ統計学を活用する必然性が感じられないこともあるでしょう.本講義では,ベイズ統計学の特徴が活かされる事例を取り扱い,Rを用いた解析法を具体的に説明するため,ベイズ統計学の使いどころがはっきりと理解できるようになるでしょう.
◆受講後、習得できること
- ベイズ統計学の考え方が分かり,一般的な統計学の手法との違いが分かるようになる.
- ベイズ統計学での推論の進め方(ベイズ的アプローチ)の考え方を学ぶことで,データ以外の情報を利用した解析手法を習得できるようになる.
- Rを用いたベイズ的アプローチによるデータ解析ができるようになる.
◆受講対象者
- ベイズ統計学を基礎から学びたい方
- ベイズ的アプローチに興味がある方,一般的なアプローチとの違いを知りたい方
- データ解析の実務に携わっている方
担当講師
株式会社フィンデクス 代表取締役 博士(学術) 青木義充 先生
慶應義塾大学にてニューラルネットワーク,衛星レーダの画像解析の研究に従事.2004年に一橋大学助手就任し,金融データ解析を専門とする.2007年から株式会社QUICKで,金融業界動向のマーケティング,新たな金融情報サービスの企画,金融機関などとの共同研究に従事する傍ら,総合研究大学院大学複合科学研究科統計学専攻を修了し,商品先物のリスクに関する研究で学位(学術)を取得する.それ以降,金融に関する学会,論文の発表,著書の執筆のほか,一橋大学,上智大学で非常勤講師としてデータサイエンス,数理ファイナンスを指導.2018年9月,FinTech時代に真に役立つ金融知識と技能を幅広い方々に届けるべく,株式会社エフビズを創立,代表取締役を務める.2020年11月に社会人向けデータサイエンス教育プログラムとデータ解析コンサルティングに特化した株式会社フィンデクスを共同創業し,代表取締役に就任.
■業界での活動
企業との共同研究,データ解析コンサルティング
学会,研究集会での研究発表,
大学での非常勤講師,企業での教育研修セミナー講師
・一橋大学,上智大学,成蹊大学
一般向け,専門家向けの各種セミナー講演,
■専門・得意分野
時系列解析,金融データ解析,ベイズ統計学,データサイエンス
セミナープログラム(予定)
1.はじめに
1-1ベイズ統計学の考え方
a. 頻度論的アプローチ
b. 異なるの情報の利用
1-2.条件付確率とベイズの定理
a. 条件付確率と周辺確率
b. ベイズの定理
1-3.事前情報とデータによる情報
a. 因果関係の整理
b. 学習の効果
2.ベイズ統計学における推定手法
2-1.ベイズ統計学の特徴
a. 尤度と最尤推定法
b. 異なる情報に関する確信度合
c. 尤度と事前情報の組み合わせ方:事後分布の計算
d. 様々な事前情報の考え方:正規分布,一様分布,無情報事前分布
2-2.推定手法
a.様々な確率分布のパラメタ推定:正規分布,逆ガンマ分布
b. 推定結果のまとめ方:事後平均,事後標準偏差,信用区間
c. マルコフ連鎖モンテカルロ法(MCMC法)の考え方
d. ギブスサンプラーのアルゴリズム
3. データ解析
3-1一般的な統計解析の手法との比較
a. データの分布を解析する
b. 線形回帰モデルを解く
3-2.ベイズ統計ならではの解析手法
a. 打ち切りなどの不完全な観測データへの応用
b. データ拡大法のアルゴリズム
4.Q&A
公開セミナーの次回開催予定
開催日
未定
開催場所
未定
受講料
未定
備考
※配布資料・講師への質問等について
●配布資料は、印刷物を郵送で送付致します。
お申込の際はお受け取り可能な住所をご記入ください。
お申込みは4営業日前までを推奨します。
それ以降でもお申込みはお受けしておりますが(開催1営業日前の12:00まで)、
テキスト到着がセミナー後になる可能性がございます。
●当日、可能な範囲で質疑応答も対応致します。
(全ての質問にお答えできない可能性もございますので、予めご容赦ください。)
●本講座で使用する資料や配信動画は著作物であり
無断での録音・録画・複写・転載・配布・上映・販売等を禁止致します。
お申し込み方法
★下のセミナー参加申込ボタンより、必要事項をご記入の上お申し込みください。